Mapping health research effort

Databases:

  • data
        1. All RCTs registered at WHO ICTRP by Jan 1st 2016, 
        2. with start date between 2006 and 2015
        3. with study type and design corresponding to RCT
        4. with at least one country location among the 187 countries included in the GBD2010 study
  • replicates
        1. for each disease, replicates of the mapping of RCTs across diseases

We will:

      1. Derive uncertainty intervals for the mapping of RCTs across diseases

In [1]:
#Upload database
data <- read.table("/media/igna/Elements/HotelDieu/Cochrane/Mapping_Cancer/Flowchart/database_all_diseases_final_ok.txt")
N <- nrow(data)
names(data)


  1. 'TrialID'
  2. 'brief_title'
  3. 'official_title'
  4. 'Primary_sponsor'
  5. 'Source_Register'
  6. 'Recruitment_Status'
  7. 'other_records'
  8. 'Target_size'
  9. 'Study_type'
  10. 'Study_design'
  11. 'Phase'
  12. 'Countries'
  13. 'condition'
  14. 'Secondary_ID'
  15. 'Source_Support'
  16. 'Secondary_Sponsor'
  17. 'year'
  18. 'Interv'
  19. 'Regions'
  20. 'Nb_ctr_per_reg'
  21. 'Sample'
  22. 'PMID'
  23. 'GBD28'
  24. 'GBD171'
  25. 'Infectious'
  26. 'MNN'
  27. 'Cancer'
  28. 'Chronic'
  • TrialID: unique trial ID from WHOICTRP
  • Regions: 7 epidemiological regions from GBD 2010 study
  • GBD28: classification according to 28 categories defined in Atal et al. BMC Bioinformatics (2016): This classification includes the injuries category, we exclude it

In [2]:
#Upload traduction names/label categories
Mgbd <- read.table("/home/igna/Desktop/Programs GBD/Classifier_Trial_GBD/Databases/Taxonomy_DL/GBD_data/GBD_ICD.txt")
#And supress injuries from the causes of burden
grep("Injur",Mgbd$cause_name)
GBD27 <- sapply(strsplit(as.character(data$GBD28),"&"),function(x){paste(x[x!="28"],collapse="&")})
data$GBD27 <- GBD27


28

2- Estimation of number RCTs per region and disease


In [3]:
regs <- sort(unique(unlist(strsplit(as.character(data$Regions),"&"))))
LR <- lapply(regs,function(x){1:nrow(data)%in%grep(x,data$Regions)})
LR <- do.call('cbind',LR)

In [4]:
dis <- 1:27
d <- dis[1]

SMs <- list.files(paste("/media/igna/Elements/HotelDieu/Cochrane/Mapping_Cancer/Incertitude_mapping/Replicates/",as.character(d),sep=""))

In [5]:
ss_sp <- read.table(paste(c("/media/igna/Elements/HotelDieu/Cochrane/Mapping_Cancer/Incertitude_mapping/Replicates/",as.character(d),"/Sens_spec.txt"),collapse=""))

In [6]:
options(repr.plot.width=9, repr.plot.height=3)
par(mfrow=c(1,4))
for(i in 1:ncol(ss_sp)) hist(ss_sp[,i],xlim=c(0,1),main=colnames(ss_sp)[i],xlab=NULL)



In [ ]: